Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization

نویسندگان

  • Y. Shen
  • Z. Wen
  • Y. Zhang
چکیده

The matrix separation problem aims to separate a low-rank matrix and a sparse matrix from their sum. This problem has recently attracted considerable research attention due to its wide range of potential applications. Nuclear-norm minimization models have been proposed for matrix separation and proved to yield exact separations under suitable conditions. These models, however, typically require the calculation of a full or partial singular value decomposition (SVD) at every iteration that can become increasingly costly as matrix dimensions and rank grow. To improve scalability, in this paper we propose and investigate an alternative approach based on solving a non-convex, low-rank factorization model by an augmented Lagrangian alternating direction method. Numerical studies indicate that the effectiveness of the proposed model is limited to problems where the sparse matrix does not dominate the low-rank one in magnitude, though this limitation can be alleviated by certain data pre-processing techniques. On the other hand, extensive numerical results show that, within its applicability range, the proposed method in general has a much faster solution speed than nuclear-norm minimization algorithms, and often provides better recoverability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Alternating Direction Algorithm for Matrix Completion with Nonnegative Factors

This paper introduces a novel algorithm for the nonnegative matrix factorization and completion problem, which aims to find nonnegative matrices X and Y from a subset of entries of a nonnegative matrix M so that XY approximates M . This problem is closely related to the two existing problems: nonnegative matrix factorization and low-rank matrix completion, in the sense that it kills two birds w...

متن کامل

Recover the lost Phasor Measurement Unit Data Using Alternating Direction Multipliers Method

This paper presents a novel algorithm for recovering missing data of phasor measurement units (PMUs). Due to the low-rank property of PMU data, missing measurement recovery can be formulated as a low-rank matrix-completion problem. Based on maximum-margin matrix factorization, we propose an efficient algorithm based on alternating direction method of multipliers (ADMM) for solving the matrix co...

متن کامل

Sparse Learning via Maximum Margin Matrix Factorization

In this paper, an algorithm for sparse learning via Maximum Margin Matrix Factorization(MMMF) is proposed. The algorithm is based on L1 penality and Alternating Direction Method of Multipliers. It shows that with sparse factors, sparse factors method can obtain result as good as dense factors.

متن کامل

Alternating Strategies Are Good For Low-Rank Matrix Reconstruction

This article focuses on the problem of reconstructing low-rank matrices from underdetermined measurements using alternating optimization strategies. We endeavour to combine an alternating least-squares based estimation strategy with ideas from the alternating direction method of multipliers (ADMM) to recover structured low-rank matrices, such as Hankel structure. We show that merging these two ...

متن کامل

Regularized non-negative matrix factorization using alternating direction method of multipliers and its application to source separation

Non-negative matrix factorization (NMF) aims at finding nonnegative representations of nonnegative data. Among different NMF algorithms, alternating direction method of multipliers (ADMM) is a popular one with superior performance. However, we find that ADMM shows instability and inferior performance on real-world data like speech signals. In this paper, to solve this problem, we develop a clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2014